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ABSTRACT
Voluntary residential Green Infrastructure (GI) stormwater management retrofit 
programs can help cities comply with environmental regulations while also 
improving quality of life. Previous research has identified influential factors in 
residents’ willingness to adopt GI, but few have simultaneously studied the spatial 
and temporal dynamics of GI. I use a six-year record of participation in a voluntary 
residential GI program in Washington DC to explore how neighborhood 
characteristics and social influence affect GI adoption over time. Statistical 
regression and Monte Carlo permutation resampling techniques are used to 
explain the spatial-temporal patterns of growth of the program. I demonstrate 
empirical evidence that participation location is increasingly determined by the 
locations of previous participants. These findings suggest that past participants 
will increasingly influence spatial clustering of GI in the city. 
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1 INTRODUCTION
Over forty years after the US EPA’s passage of the Clean Water Act (CWA), 53% of 
river and stream miles and 69% of lakes, ponds and reservoirs in the US remain 
classified as “impaired” (US EPA 2015). “Green Infrastructure” (GI) is a multi-scale
strategy that acknowledges the critical roles natural processes such as 
evapotranspiration and infiltration play in supporting healthy, sustainable societies
(Benedict and McMahon 2006). GI can be used to refer to the importance of 
regional scale conservation planning (e.g. riparian corridor protection and growth 
management) on hydrological regime and water quality. Within cities however, GI 
often refers to the implementation of best management practices (BMPs) for 
stormwater management. These BMPs include rain gardens, bioswales, porous 
pavement, and tree plantings. They are mean to bring cities into compliance with 
stormwater and sewage infrastructure CWA regulations while also improving 
overall environmental quality and livability and are often implemented at the site 
scale. This type of GI is implemented on a property-by-property basis, often by 
retrofitting sites to better manage stormwater runoff (US EPA 2004; Mandarano 
and Paulsen 2011; Young 2011).

Understanding how to encourage and speed private property retrofits is 
particularly useful for post-industrial cities, which are likely to have slow 
redevelopment rates, stagnated population growth, and aging infrastructure in 
need of upgrade (Birch and Wachter 2008; Schilling and Logan 2008)). Residential 
land use can make up over 50% of the land area in urbanized areas, making 
voluntary residential adoption of GI a potentially very cost effective means for 
cities to manage stormwater runoff, especially after ecosystem services co-benefits
are factored in (Mandarano 2011; Brown et al. 2016). As I will expand on in the 
following section, previous research has explored the influence of financial 
incentives, environmental attitudes, environmental knowledge, and physical 
constraints on the potential for residential adoption of GI. 

In this study, I examine the spatial-temporal patterns in which GI has actually been
adopted by residents in Washington DC during the first six-years of a voluntary GI 
installation program called RiverSmart Homes.  Unlike the results of surveys, in 
which residents are asked directly about willingness to participate based on their 
preferences, the analysis of empirical data adds two things. First, it illuminates 
how highly heterogeneous spatial distributions of physical and social factors have 
influenced actual adoption. Second, it allows us to explore the spatial implications 
of time-dependent processes of adoption, such as pathways of information 
dissemination. This research tests how participation is dependent on spatial 
distribution of socio-demographic and physical landscapes of the city  and how the 
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spread of participation also exhibits a space-time event dependence that can be 
associated with the locations of previous installations. 

2 PREVIOUS RESEARCH
Conventional drainage infrastructure, including catch basins, pipes and cisterns, is
typically located in the public right of way. Retrofits of existing impervious areas 
with GI to effectively manage runoff close to where it is generated is often referred
to as ‘source control’. Source control measures, such as rain gardens, require land 
surface area to intercept and retain or detain runoff volumes (Valderrama and 
Levine 2012; Keeley et al. 2013). Access to these areas can be gained through new 
development regulations or through encouraging property owners to retrofit their 
properties. Localities with limited local budgets and slow redevelopment rates see 
GI as a cost-effective alternative to conventional infrastructure, especially if GI can
be constructed by retrofitting private properties rather than relying on public 
property and right-of-way projects (Valderrama and Levine 2013).

Several studies have used surveys to determine the relationship between the 
residential uptake of GI and socio-demographic characteristics. Participants’ stated
responses reflect both public and private motivations to GI adoption. Stated public 
benefits include: general desire to improve the environment (Thurston et al. 2008; 
F. Montalto, Behr, and Yu 2012; Baptiste, Foley, and Smardon 2015), stormwater 
control (Sun and Hall 2013), better water quality and hydrological improvement
(Londoño Cadavid and Ando 2013). Stated private benefits include: owners’ desire 
to reduce personal property flooding (Londoño Cadavid and Ando 2013), financial 
savings when subsidized installations are offered (Brown et al. 2016), and access 
to an unregulated source of irrigation water (Brown et al. 2016). Although 
participant survey responses yield insight into individuals’ preferences for 
environmental services, research has shown that actions can differ substantially 
from stated intentions (Diamond and Hausman 1994; Portney 1994). 

One potential source of difference between stated responses and actual program 
participation is that responses to surveys reflect the respondent’s preferences 
assuming he or she is aware of the program in question. In reality, awareness 
about voluntary programs may be a stronger determinant of participation. Many 
have suggested economic incentives as one way to increase awareness of 
strormwater management and encourage private adoption of GI. These incentives 
work through pricing the externality of runoff production and crediting property 
owners that treat or management their own stormwater runoff (Sample et al. 2003;
Parikh et al. 2005). The logic of economic incentive strategies is based on an 
assumption of economic rationality where property owners will invest in GI 
construction if they can achieve long-term cost savings on stormwater fees. 
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However most studies demonstrating the effectiveness of such approaches are 
theoretical rather than empirically-based. After taking into account the time that 
knowledge about fees, credits and GI retrofits takes to travels through social 
networks and individual decision-making processes, adoption rates have been 
shown to be much lower than when perfect economic rationality is assumed (F. A. 
Montalto et al. 2013). 

Infrastructure managers have also reported that limited public knowledge about 
stormwater issues and lack of familiarity are barriers to widespread adoption of GI
(de Graaf and der Brugge 2010; Keeley et al. 2013). Resident unfamiliarity with GI 
programs may also deter them from participation. Interviews carried out with 
participants in an economic-incentive based GI program confirmed that the 
decision to participate represented having taken a risk. In overcoming this risk, 
one third of interviewees expressed that “word-of-mouth” and “project presence” 
played a significant role in the decision to participate (Brown et al. 2016). 

Few empirical studies address the spatial patterns of residential GI adoption. An 
empirical study of a subsidized, voluntary rain barrel program showed that 
adoption counts were related to the social characteristics of neighborhoods, 
including “green” party voter proportions and home ownership rates. In addition, 
this study showed higher adoption rates in locations nearer to rain barrel 
distribution sites and near long-term GI demonstration and information 
dissemination sites (Ando and Freitas 2011). Another study of a two-year 
experimental residential rain garden adoption program showed more spatial 
clustering near previous adopters than would have been expected due to chance 
accounting for the heterogeneity in the spatial configurations of parcels (Green et 
al. 2012). These studies reveal a move from static personal attributes as drivers of 
GI adoption towards understanding the influences of time-dependent information 
dissemination and social capital on GI adoption.

Yard landscaping practices have also been framed as expressions of personal 
preferences as well as functions of historical and modern social norms. Research 
shows that residents’ yard landscaping practices are extensions of self-image that 
respond to cultural norms and that vegetation choices exhibit mimicry between 
neighbors (Zmyslony and Gagnon 1998; Larsen and Harlan 2006; Nassauer, Wang,
and Dayrell 2009). Therefore, we might expect the participation of resident in a GI 
program to have some influence on his/her neighbors’ propensity to participate in 
the program. Participation in a voluntary GI program may similarly be socially 
influenced since it reflect both landscaping preferences and requires residents to 
gain awareness of the program. Gaining awareness of the program itself is a 
process of information dissemination. Others have suggested “epidemic” models of
technology diffusion to express the spread of new information (Geroski 2000; Jaffe,
Newell, and Stavins 2002). In these models, imitative behavior is primarily 
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influenced by the spread of information through proximity-dependent social 
networks. Empirical research has demonstrated the utility of information 
dissemination models for explaining highly visible behaviors, such as residential 
solar panel installation (Rode and Weber 2016), automobile purchasing (Grinblatt, 
Keloharju, and Ikaheimo 2004), and recycling (Hopper and Nielsen 1991). When 
neighbors are exposed to “nudging” information, even a non-visible environmental 
behavior, such as energy and water consumption has been shown to be influenced 
by neighbors’ behaviors (Allcott 2011; Jain et al. 2013). Normative social influence,
which relies not only on sharing of information, but also on communication of 
behavioral standards (“the right thing to do”), has been shown to be influential, 
even if residents do not report it being a major rationale for behavioral change
(Nolan et al. 2008; Schultz et al. 2016).

From the above, we can hypothesize two major causes of observed spatial 
patterning of voluntary GI. First, adoption rates may be determined by the spatial 
heterogeneity of social and physical conditions with the city. Second, the locations 
of participants may be determined by time-dependent information diffusion, which 
may influence spatial clustering of adoption. In the latter, emphasis is shifted from 
the physical and social conditions that drive residents to independently adopt GI 
towards understanding how residents learn about the program and subsequently 
decide to participate. If participation locations are dependent on the spatial 
locations of previous GI installations, even after controlling for the tendency of 
properties and residents with similar characteristics to cluster together, this is 
evidence of previously uncaptured spatial processes of program growth. 
Understanding the spatial-temporal growth of voluntary GI programs can help 
urban watershed managers who leverage ambassadorial behaviors or key 
demonstration sites in residential areas to efficiently disseminate information that 
promotes residential participation in environmental programs (Hopper and Nielsen
1991; Castaneda et al. 2015). This is important because if previous installations 
and participants influence the participation of their neighbors, municipalities 
might anticipate savings on future outreach budgets and plan for when a program 
may begin to grow on its own. Quantifying this type of influence also begins to 
suggest the range of timeframe necessary for adapting urban landscapes to future 
conditions through private landscape management.

3 CASE STUDY: WASHINGTON DC RIVERSMART 
HOMES PROGRAM
3.1 PROGRAM DESCRIPTION

The case used in this research is the RiverSmart Homes Program, administered by 
Washington DC’s Department of Energy and the Environment (DOEE). RiverSmart 
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Homes is a voluntary stormwater retrofit program that provides subsidized 
installations of GI to residents. The purpose of the program is to help residents 
reduce stormwater runoff from their properties. It offers subsidies to adopt rain 
barrels, rain gardens, bayscaping (native plant landscaping), permeable pavement 
or shade trees on their properties. Homeowners make a copayment for each of the 
installations: $45 per rain barrel, $50 per shade tree, $75 per rain garden (limit 
one), $100 per bayscaping installation (limit one), and up to $1200 for the removal 
of impervious surface area and installation of permeable pavers. Participants are 
informed that they are required to maintain the installed features while they own 
the property.

The process of becoming a RiverSmart Homes participant involves the resident 
finding out about the program, contacting RiverSmart Homes staff to schedule an 
initial appointment (usually through an online scheduler) to assess which 
installations would be feasible on the property, deciding which type of GI is desired
(if any), scheduling a contractor to install the GI and lastly installing the GI. The 
DOEE completes about 1,100 audits each year. Based on pilot programs 
administered by DOEE starting in 2007, DOEE specifically sought to eliminate 
barriers to participation including inability for non-car owners to transport 
materials to their homes, lack of understanding about installation and maintenance
of GI (DC Water 2015). Project funding has been provided through EPA 319 grants,
American Recovery and Reinvestment Act funds, the Anacostia River Clean Up and
Protection Fund, and Municipal Separated Sewer System (MS4) funds (DC Water 
2015). The geospatial location for each RiverSmart homes installation was 
recorded between 2009-2015. Dates of adoption for each participant are also 
available. Figure 1 shows the overall participation trend over time. Through 2014,
there were 3,737 RiverSmart Homes installations on 2,836 unique properties, 
which represents 2.5 percent of all residential parcels in DC. The most popular 
installation was rain barrels (63%), followed by bayscaping (17%), rain gardens 
(14%), and lastly trees and permeable pavers (3% each). Figure 2 shows a map of 
the density of all GI installations through the RiverSmart Homes Program, overlaid
on total populations of each of the district’s census tracts. It is clear that there is 
spatial clustering of adoptions within the city.

In 2014, DOEE administered an online survey (>800 responses) of participants’ 
experiences with their GI installations. The survey included a question asking 
participants how they initially learned about the RiverSmart Homes program. 
Figure 3 shows that the majority of respondents learned of the program through 
friends, family or a past participant. What remains unknown is the extent to which 
these informational networks resulted in spatial patterns. 
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Figure 1.  Cumulative number of installation and program participants over time
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Figure 2.  Density of all GI installations through the RiverSmart Homes Program 
from 2009 – 2014, overlaid on total population per census tract.
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Figure 3. Survey responses from RiverSmart Homes participants to how they
initially learned of the program.

4 METHODS
4.1 OVERALL ADOPTION RATE REGRESSION
The regression of overall adoption rates between 2009 – 2014 on neighborhood 
characteristics captures the effects of spatially-dependent factors that influenced 
early residential GI adoption. Previous literature indicates that both physical form 
and social characteristics of neighborhoods are likely to reflect information 
dissemination and landscaping preferences. Therefore, two sets of explanatory 
variables, for physical and demographic neighborhood characteristics are 
included. The regression is specified as in Equation 1.

log (GIcoun ti )=α+δ log (toth hi)+Di β+P i γ+ui (1)

where log (GIcoun ti ) is the log of the total number of GI  installations for census tract

i; log (tothhi )is the log of the total number of households in census tract i; Diis a 

vector of census tract i’s demographic variables and Pi is a vector of census tract i
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’s physical variables. Nested models of the full global model presented in (1) were 
estimated to compare the explanatory power of the model with only physical 

variables Pi (the global physical model) versus the model with only demographic 

variables Di (the global demographic model). The maximum likelihood ratio test 

was calculated on the ordinary least squares regressions to quantify the 
explanatory strength of the global physical and global demographic models. 
Variance Inflation Factors (VIFs) were also calculated to ensure that variables 
included in each model did not exhibit extreme multicollinearity, which could 
result in unreliable coefficient and standard error estimates.

Spatial autocorrelation, a violation of the ordinary least squares assumption that 
observations are independent and identically distributed, is a symptom of social 
influence, diffusion processes, and missing spatially correlated variables (Anselin 
and Griffith 1988). This problem has been shown to result in inaccurate (artificially
low) measures of standard error associated with the estimated coefficients
(Hoechle 2007). While the coefficient estimates themselves will not change, 
standardized coefficients, which are needed to draw conclusions about the 
explanatory strength of each of the variables included in the model will be 
influenced by mis-estimated standard errors. Calculation of Moran’s I on the 
residuals for each model is a common methods of determining the extent to which 
the amount of variation in the data unexplained by the model may be biased due to
uncaptured spatial autocorrelation.

To address this problem, the specification shown above was also used to estimate a
Geographic weighted regression (GWR) on the standardized variables included in 
the full global model. GWR generalizes the assumptions that observations are 
independent and identically distributed, and is used to demonstrate extent of 
spatial variability of estimated coefficients between census tracts through 
distance-weighting the results of repeated regressions (Fotheringham, 2009). 
Through a cross-validation, leave-one-out technique a kernel weighted bandwidth 
is chosen to determine how spatially correlated coefficient estimates will be 
determined. Smaller bandwidths allow GWR coefficient estimates to be highly 
dependent on nearby neighbors’ estimates and reflect high levels of spatial 
dependence (Bivand 2017). The selection procedure for the adaptive bandwidth 
and the GWR coefficient estimation were performed using the ‘R’ package ‘spgwr’. 
The chosen kernel weighting scheme was based on a Gaussian distribution. One 
GWR model is fit for each of the 172 census tracts included in the study. An alpha 
= 0.05 significance level determined the significance of each census tracts’ GWR-
estimated standardized coefficients. The set of GWR model estimates are centered 
on the OLS regression (the full global model) estimates. 

Linear regression was chosen to maintain interpretability of the estimated 
coefficients. The log transformation of the total count of GI installations aided in 
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ensuring a more normal distribution of residuals from the estimated models. The 
presence of GI adoptions was treated as latent propensity to adopt GI. To avoid 
biasing the model coefficients from removing zero-valued census tracts from the 
analysis however, these census tracts were assumed to have low propensity of 
adoption, and a small value (0.1) was added before taking the log. Theoretically, 
this treats number of adoptions per each census tract as a proxy for the latent 
propensity of residents within the census tract to participate in the program. 
Summary statistics for each type of GI and the attributes of the census tracts are 
shown in TABLE 1.

The explanatory variables included in the regressions were assembled from various
sources and aggregated to the census tract level, which is a unit of analysis 
intended to act as a proxy for neighborhoods. Physical variables included: mean 
area of residential parcels, mean percent impervious of residential parcels, and 
mean tree canopy cover of impervious parcels. The mean area of residential 
parcels was calculated by selecting the properties with use code descriptions 
including the word “residential” (including: single family, multi-family, mixed use, 
etc) according to the Government of the District of Columbia Office of Tax and 
Revenue classifications 
(http://app.cfo.dc.gov/services/tax/property/pdf/usecodes.pdf) and the property lot 
shapefile from the District of Columbia Open Data portal 
(http://opendata.dc.gov/datasets/1f6708b1f3774306bef2fa81e612a725_40). The 
mean area of residential parcels per census tract was log transformed to correct 
for a right skewed distribution. The percent impervious and percent tree canopy 
were calculated using Zonal Statistics (ArcGIS Desktop 10.4) tools to summarize 
raster land use classification types per each residential property boundary. High 
resolution (1 meter x 1 meter) raster data classifying urban land cover in DC into 
six classes (base soil, buildings, roads/railways, other paved surfaces, tree canopy, 
and water) was obtained from the University of Vermont (University of Vermont 
2011). Land cover for this dataset was derived using orthorectified leaf-on 
multispectral imagery. Each parcel’s existing land cover percentages were 
aggregated to the census tract level by averaging percent tree canopy cover for all 
residential parcels in the census tract. Demographic variables included: median 
household income, percent renters in the census tract, percent non-English 
speaking population, population density, percent white, and median home value, 
among others. All demographic variables came from 2010 US Census. The 
distribution of each variable to be included was examined to limit the influence of 
skewed distributions and outliers. Median household income was log-transformed 
to correct the right-skewed distribution and percent white was represented as a 
dummy variable (=1 if > 80% white) because of a clear bimodal distribution in the 
data. The percent of the census tract in which English was not the primary 
household language was represented as a dummy variable (=1 if > 0.3%) to 
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capture the effect of long right tailed distribution. TABLE 1 shows summary 
statistics for each of the variables considered for the regression.

4.2 SHUFFLE TEST

In order to test for evidence of spatial-temporal dependence of GI adoption 
patterns, I use a Monte Carlo randomized permutation resampling technique called
the ‘shuffle test’ (Anagnostopoulos, Kumar, and Mahdian 2008). This test works 
through resampling the same population of participants many times, randomizing 
only the time of participation, and comparing distance-based metrics between the 
time-randomized (simulated) distribution and observed (empirical) distance-based 
metrics. Unlike the above regression analyses, the shuffle test, “controls” for the 
effects of individual level heterogeneity through the assumption that personal and 
property attributes typically remain unchanged over time. The simulated 
distribution therefore isolates the effect of order of participation by creating a 
counterfactual distribution of participation orderings likely to occur given no time 
dependence of participation location. The observed metric (for which we are 
interested in testing extent of time-dependence) is then compared to this simulated
“shuffled” probability distribution. Significant departure of the observed metric 
from the simulated probability distribution indicates that empirical participation 
locations were dependent on the locations of previous participations. 

Rejection of the null hypothesis indicates that the location of participation cannot 
be ruled out as independent from the timing of previous participants. The strength 
in resampling techniques improves the findings of the survey administered by the 
District by experimentally testing how spatial program growth may not merely be a
function of personal or property characteristics, but also on exposure to previous 
participants. It also is able to isolate the effect of proximity to a previous 
participant from individual and neighborhood characteristics that are difficult to 
obtain data on, and which result in omitted variable bias and spatial 
autocorrelation. If all such individual-level variables could be measured and 
included in a regression, then the detection of spatial-temporal dependence in the 
shuffle test would be similar to identification of the estimated effects of spatial and 
temporal lags in regression.

I chose two metrics to represent exposure to GI: mean distance to closest previous 
program participant (DTC), and the number of previous participants within a 200m
radius (R200). Proximity-based, time-dependent exposure pathways may include a 
resident observing a RiverSmart Homes sign while passing a previous participant’s
property, previous RiverSmart Homes participants talking about their installations 
to their neighbors, or a potential participant inquiring about a neighbors’ 

landscape upgrades. For each year t from 2010 to 2015, the set GI t ,total includes all 

participants that have participated in the program at any time, from t= 2010 to the

12



Confidential manuscript in review at Journal of Environmental Planning and 
Management

current time, tcur. The set GI t , prev includes participants at time t that participated 

between t=2010, … , tcur -1. The set GI t ,cur includes participants in tcur only. The 

simulated probability distribution is created by randomly assigning (with 

probability = 0.5) each installation location in the set  GI t ,total to either GI t ,cur ,i, or

GI t , prev , i, where i indicates the ith simulation iteration set. Then, the two metrics, 

DTCi and R200i are calculated using the actual geographic coordinates of 
participants with the random assignment for the ith iteration. The simulation is 

repeated for iϵ (1 ,… ,N ) to form the time-randomized simulated distribution, where 

N is the total number of iterations (500). The observed metrics DTC and R200 for 
tcur are compared to the simulated distributions for these metrics. 

Figure 4 illustrates possible comparisons between the observed metrics and the 
metrics from a randomized iteration. For DTC, socially influenced clustering near 
previous participants would result in an observed mean distance that is on average
less than mean distances from the time-randomized simulations. If there is no 
evidence of socially influenced clustering, then on average DTC should be about 
equal to the distances from the time-randomized simulations. Another type of time-
dependent patterning is if observed DTC are actually longer than the time-
randomized simulations. This could occur if time-dependent outreach activities 
happening in specific neighborhoods outweigh neighbor-to-neighbor dynamics. 
Figure 4 illustrates similar comparisons for the R200 metric.
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Figure 4. Conceptual illustration of observed metrics compared to a time-
randomized iteration. Numbered circles represent the year of adoption 1, or 2. The
left-most column demonstrates the case of social influence clustering: the observed
DTC metric is expected to be less than the average time-randomized simulation 
iteration, while the observed R200 metric is expected to be greater than the 
average time-randomized simulation iteration. The right-most column 
demonstrates the case of growth to distant neighborhoods: the observed DTC 
metric is expected to be greater than the average time-randomized simulation 
iteration, while the observed R200 metric is expected to be less than the average 
time-randomized simulation iteration. Gray circles represent the area within a 
given buffer radius of each year 2 participant.
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The choice of the time discretization (yearly) was chosen to help isolate the effect 
of information dissemination through the GI installations and previous participants
themselves. The DOEE did provide promotional materials to community groups, 
non-profit organizations and at neighborhood-based fairs. These promotional 
activities would likely have a short-lived spatial effect on the spatial locations of 
participants. For example, in the days to weeks following a neighborhood 
promotional event, the DOEE confirmed seeing spikes in participants from that 
neighborhood. In this case, if the first participant reacting to such an activity had 
GI installed on her property and was followed by another participant in the 
neighborhood reacting to the same activity on his property several weeks later, 
then at the weekly scale, participant two might appear to have been “influenced” 
by his neighbor’s (participant 1) installation. In fact both participants were 
responding to a location-based promotional activity. Discretizing time with longer 
intervals minimizes the effect of short-lived, spatial influences that increase 
participation. Table 2 highlights the spatial and temporal scales associated with 
participants’ answers to the question “How did you find out about the RiverSmart 
Homes program?” that reported in the online survey (2014). Social interactions 
that are both spatially determined and likely to happen on longer (months to years)
time scales that are dependent on spatial locations include interactions with 
neighbors or through prolonged information dissemination through a 
neighborhood or other spatially-based group.

5 RESULTS
5.1 NEIGHBORHOOD CHARACTERISTICS AND OVERALL 
ADOPTION
The results of the global regression are shown in Table 3. The full global model 
includes significant demographic and physical explanatory variables. The full 
model is able to account for over 50% of the variation in GI participation in census 
tracts (Adjusted R2 = 0.53). There is significant improvement in the explanatory 
power of the model when both sets of variables are included, but the likelihood 
ratio test (F-test) and Adjusted R2 values show that more explanatory power is 
derived from the demographic variables (Adjusted R2 = 0.35) than the physical 
variables (Adjusted R2 = 0.29). The estimated coefficients in the full global model 
indicate that a 1% increase in the total number of households in a census tract is 
accompanied by a 2.2% increase in the number of GI installations, controlling for 
other factors. Higher mean percent imperviousness on residential parcels is 
associated with higher numbers of participants. However, the significance of a 
squared term for imperviousness indicates non-linearity. After reaching a turning 
point at 51.8% mean imperviousness, the effect of impervious area reverses and is 
associated with decreased participation. This indicates that higher levels of 
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participation are found at intermediate levels of impervious surface area as a 
proportion of the property. Lower levels of participation are found at both the 
highest and lowest levels of site imperviousness.  Increased numbers of renters is 
associated with decreased participation, confirming the results of previous 
empirical research on rain barrel adoption in Chicago (Ando and Freitas, 2011). 
Higher median incomes are also associated with increased participation, with 1% 
increase in median income associated with a 0.76% increase in number of 
participants. Census tracts that are over 80% white on average have 78.9% fewer 
participants than more diverse neighborhoods. Neighborhoods with higher levels 
of non-English speakers are also associated with higher numbers of participants, 
providing evidence corroborating the findings of previous surveys that find that 
non-White communities expressed greater support of stormwater management 
installations on private properties (Montalto et al., 2012; Baptiste et al., 2015). The
standardized coefficients of the full global model show that the most influential 
explanatory variable was the total number of households in the census tract, 
followed by the dummy variable for whether or not the census tract was over 80% 
white. 

A spatial autocorrelation test of the residuals of the full model using inverse 
weighted distances of the centroids of each census tract and Moran’s I revealed 
evidence of spatial autocorrelation in the residuals of all three global models. The 
GWR models fit for each census tract capture the heterogeneity in estimated effect
of each standardized variable accounting for spatial autocorrelation. As can be 
seen in Table 3, not all of the explanatory variables that are estimated as 
statistically significant at the alpha=0.05 level are estimated to have significant 
effects in all of the census-tract specific GWR estimates. The only variables that are
estimated as statistically significant for all 172 DC census tracts are the log of the 
total number of households in the tract, the number of renters in the tract, and the 
dummy variable for whether the tract is > 80% white. The range of estimates of 
the variables bracket the global full model estimates but capture additional 
variability of effect distributed over space. Based on the results of the GWR, the 
most influential variables based on magnitude of the estimated standardized 
coefficients were the indicator for percent white > 80% (negative effect on 
adoption) and the average percent of tree canopy for all residential parcels within 
the tract (positive effect on adoption). 

5.2 SOCIAL INFLUENCE
Evidence of significant time-dependent social influence was detected through both 
the DTC and R200 shuffle tests. Comparison between the simulated probability 
distribution and the observed DTC suggests that the effect of social influence 
between neighbors did not become dominant until 2014 (Figure 5a). From 2009 
to 2010, there is a statistically significant evidence of time-dependency, but 2010 
installations were located significantly further from 2009 installation than would 
be expected from a distribution of time-independent simulations (>99.9% 
percentile). After the first year of implementation, the observed DTC relative to the
simulated probability distribution appears to reflect the right-most situation in 
Figure 4, where growth to distant areas outweighs proximate social influence of 
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neighbors. Over time however, the influence of growth to distant areas is gradually
outweighed by the influence of proximate neighbors.. By 2014, the observed DTC 
is significantly lower than what would be expected from a distribution of time-
independent simulations (<0.1% percentile). This indicates that the growth of the 
program transitions from a dispersion dynamic to a clustering dynamic between 
2009 and 2014, controlling for the overall increasing density of installations over 
time

The results from the R200 metric shuffle test support the finding that participation 
growth first occurred in distant areas after the first year (Figure 5b). The 
observed mean number of previous participants within a 200m radius of each 2010
participant was significantly lower than expected from a distribution of time-
independent simulations (<0.1% percentile). This situation again reflects the right-
most situation shown in Figure 4. After three years however, this relationship 
reversed itself, and the observed mean number of previous participants within the 
200m radius of each  2012 participant (4.65) was significantly higher than 
expected from a distribution of time-independent simulations (mean=3.89 within 
200m radius; percentile>99.9%). This is more reflective of the left-most situation 
shown in Figure 4. 
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Figure 5a DTC comparison between simulated probability distribution and
observed DTC (dashed line).  2010 percentile > 99.9; 2011 percentile =91.6%;

2012 percentile =99.6%; 2013 percentile < 91.8%; 2014 percentile < 0.1%

Figure 5b Comparison between simulated probability distribution and observed
R200 (dashed line).  2010 percentile <0.1%; 2011 percentile = 93.6%; 2012

percentile > 99.9%; 2013 percentile > 99.9%; 2014 percentile >99.9%

6 DISCUSSION
The regression results from this study confirm the survey results from other 
studies. Addressing spatial autocorrelation of residuals fit from a ‘global’ ordinary 
least squares regression model revealed how the magnitude of estimated effects of
variables vary across the city. Further study of the variation of these effects may 
help identify reasons why some variables are more/less influential in certain 
neighborhoods. What is clear from the regression analysis however is that 
neighborhood demographic variables are able to explain more of the variation in 
participation than physical characteristics. Since the dependent variable was the 
log of the number of installations of any type of GI (rain barrels, rain gardens, 
bayscaping, shade trees or permeable pavement), residents willing to participate 
in the program are more likely to be able to choose an intervention compatible 
with the physical constraints of their properties. This would decrease the influence
of physical factors compared to social factors. 
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The results of the GWR estimates of standardized explanatory variables also 
revealed that adoption of GI may be driven for different reasons in different areas 
of the district. While the total number of households, the number of renters and a 
high proportion of white residents were factors that were significant in explaining 
the number of GI adoptions in every census tract, other factors, such as level of 
imperviousness, average parcel area, tree canopy cover, and median income were 
only statistically significant in explaining GI uptake in a subset of census tracts. 
Among census tracts were mean tree canopy cover was significant (62), tree 
canopy cover was the most influential variable explaining GI adoption in 60 of 
them. 

Combining the findings of the regression analysis of overall participation with the 
findings of the shuffle tests allows for additional interpretation beyond similar 
studies that have sought to explain GI adoption using neighborhood 
characteristics. Instead of neighborhood characteristics reflecting the 
environmental attitudes, preferences of the participants, these characteristics 
could be more reflective of information flows and strength of social influence.

The findings of the shuffle tests demonstrated evidence that residents tended to 
participate close to previous participants even after controlling for increased 
density of the installations over time and for unobserved individual-level attributes 
that would cause people who live near each other to independently participate in 
the program. However, this pattern emerged only after a certain period of program
growth to more distant areas. For the DTC metric, statistically significant 
proximate social influence was not evident until the fifth simulation year, compared
to in the third simulation year for the R200 metric. An explanation for the 
difference in timing of this trend is the sensitivity of the DTC metric to distant 
outliers. Results of subsequent tests revealed, as expected, that as the buffer 
distance of the counts-within-radius metric is decreased (for example, R100), more 
years were necessary to detect statistically significant evidence of proximate social
influence. As the radius was increased (for example to R300), evidence was 
apparent in the second year. 

The patterns of social influence in a subsidized GI program detected in this 
research suggest that residential GI adoption can be viewed within stages. In the 
first stage (first 1-2 years of the program), early adopters contribute to the growth 
of the program throughout the city. In the second stage (years 2-4), the effect of 
locations of previous adopters begins to determine locations of subsequent 
adopters, outweighing growth to distant areas. In the third stage (years 3-5), 
adoptions by residents proximate to previous adopters becomes the dominant 
growth dynamic for the program. 

6.1 LIMITATIONS
The main limitation of the shuffle test is the assumption that individuals’ location-
based attributes are time-invariant. In reality, it is plausible that the locations of 
and demographics of decision makers are changing, and that this may be what is 
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driving spatial-temporal dependence of GI adoptions. Systemic neighborhood 
demographic change over time is one example of a time-dependent change that 
might simultaneously drive GI adoption patterns . In the shuffle test, this pattern 
might appear like a neighbor’s adoption ‘influenced’ a subsequent neighbor’s 
adoption, when in fact one or both may have been driven by external trends. A 
time-dependent confounding factor includes real estate agents promoting the 
RiverSmart Homes program to their clients as a way to upgrade the property’s 
landscaping. In this study these influences are assumed to be minimal compared to
the influence between proximate neighbors spreading information and “displaying”
their installations. However, the magnitude of such influences also likely vary 
across the city. Unfortunately, this study did not include sufficient observations to 
compare the results of shuffle tests from different census tracts. Compared to 
other models which seek to capture time dependency of information spread, 
including other resampling techniques (La Fond and Neville 2010), and panel-
based regression (Geroski 2000), this study does not control for individual 
attributes, and therefore is unable to compare the relative impacts of social 
influence versus personal preferences on participation in voluntary GI programs.

What is unclear from this research therefore is whether normative-based peer 
pressure has resulted in changes in environmental attitude, or, if social influence is
occurring through neighbors merely spreading information about the existence of 
the GI subsidy program. The choice of years as the time increment for the shuffle 
test is based on the assumption that other types of place-based program promotion
would be expected to produce quick “bursts” of proximate participation as opposed
to months-long or years long spatial-temporal dependence. However, I 
acknowledge that this logic is an imperfect proxy for conducting in-depth surveys 
for both how people learned of the program, and the spatial locations of their 
information sources. 

Previous research has shown a tenuous relationship between knowledge of 
environmental function of GI installations and motivation to install GI (Roy et al. 
2008; Londoño Cadavid and Ando 2013; Brown et al. 2016). Perhaps such a shift in
the role of social influence would constitute a future “fourth phase” of voluntary 
residential adoption of GI. This fourth phase would then begin to appear like the 
eco-normative feedback mechanisms that have been shown to be influential for 
energy and water consumption “nudge” type initiatives (Allcott 2011; Jain et al. 
2013; Schultz et al. 2016).

7 CONCLUSION
This research provides evidence that social influence between neighbors is a 
significant pathway for residents to find out about the River Smart Homes 
programs. Residential GI adoption shows evidence of positive social influence and 
that this influence results in clustered growth that outweighs growth to new areas 
after 2-3 years of program implementation. Showing that GI adoption is similarly 
responsive to peer influence for other environmental behaviors, such as water and 
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energy conservation and solar panel installations has implications for planners. 
The visibility of GI installation compared to other environmental behaviors makes 
it ideal to spread through space-based social networks as residents interact with 
each other and their local neighborhood environments. This suggests that planners
should leverage the visibility and aesthetic of GI in high traffic areas to 
disseminate information about how to participate in voluntary programs and make 
positive impacts on the environment and enlist influential community members as 
“neighborhood ambassadors” for GI programs. 

The findings of this study also demonstrate the importance of distinguishing 
between personal willingness to adopt GI, physical feasibility and social processes 
of information dissemination, as empirical correlation between low participation 
and certain social characteristics may be more attributed to limitations of program
awareness than conscious preferences of residents. In addition to relevance for 
voluntary GI adoption programs, this finding is also useful for programs that rely 
on economic incentives as motivation for private adoption of GI. Social influence 
through neighborhood “ambassadors” and highly visible installations may increase 
initial awareness and confidence in this ‘new technology’ to spur participation in 
combination with economic or normative approaches to encouraging residential 
participation.
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TABLES
TABLE 1. Summary Statistics for Overall GI Adoption and Census Tract Attributes

  Minimum Median Mean Max Std Dev

Green Infrastructure Adoptions (2009-2014)

 
Total 
Installations* 0 14 28 215 40

 Rain Barrels 0 7 14 107 19

 Rain Gardens 0 1 3 30 5

 Bayscaping 0 2 4 37 6

 
Permeable 
Pavement 0 0 1 5 1

 Trees 0 3 7 57 10

Demographic 
Variables      

 Total Households* 545 1519 1681 5375 786

 
Median Home 
Value*

 $
133,970 

 $
478,615 

 $
1,747,378 

 $
70,663,950 

 $
7,710,653 

 Total Population 1025 3315 3573 8036 1384

 Total White** 0 894 1427 6687 1559

 Total Black 44 1639 1782 5219 1264

 Total Asian 0 75 127 897 159

 
Pop < High school
ed 0 15 14 70 9
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Pop with 
Bachelor's Deg 0 26 32 100 29

 Percent in Poverty 2% 14% 18% 53% 11%

 Median Income
 $             
14,813 

 $             
68,606 

 $               
74,053 

 $               
231,042 

 $               
41,489 

 
Unemployment 
Rate 0% 10% 12% 40% 9%

 Owner 17 558 633 2099 399

 Renter 70 781 886 3360 559

 
Percent Non-
English** 0.00% 0.08% 0.15% 1.34% 0.24%

Physical Variables      

 
Mean res parcel 
area (sf)* 190 1203 1605 12666 1439

 
Mean percent 
impervious 16% 43% 46% 100% 16%

 
Mean % tree 
canopy 0% 19% 23% 60% 13%

 In MS4 (dummy) 0 0 0.30 1 0.46

       
* log transformed in regression models

** represented as a dummy variable (threshold = 80% for percent of the census 
tract that is white, 0.3% for percent of households in the census tract that are non-
English speaking)
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Table 2 . Informational Pathways to RiverSmart Homes and Spatial-Temporal 
Scales

Reported
Means of
Informa-

tion about
RSHomes

Space Dependence Scale and
Example Process

Time Dependence Scale and Ex-
ample Process

Friend, 
Family, 
Neighbor

Close: Neighbors talking

Far: Friends across town talking

Short: Talking about the program in 
the days right after installation

Long: Talking about the program 
months later when a neighbor notices 
the rain barrel in the front yard

Email Close: Neighborhood listserv 
email blast

Far: City-wide affinity group list-
serv email blast

Short: Response to email blast in 
days following

Long: Repeated email blasts sent for 
many months

Internet Not Space Dependent. People 
from across the city all can access
the Internet

Not Time Dependent. People from 
across the city can access content at 
any time

Print Media Not Space Dependent. For ex-
ample, newspapers distributed all 
over city

Short: Response to an advertisement 
in the days after print

DOEE web-
site

Not Space Dependent. For ex-
ample, people from across the city
all can access the Internet

Not Time Dependent. People from 
across the city can access content at 
any time

Flyer Close: Flyer posted at a local gro-
cery store seen by many neigh-
bors

Far: Flyer posted all over the city

Short: Response to flyer in the days 
to weeks that it is posted or distrib-
uted
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Table 3. Global Regression and GWR of GI Adoption on Physical and Demographic Factors at the Census
Tract Scale

 
Global Model: Demographic Factors

Only Global Model: Physical Factors Only

 beta ba s.e. p  VIF beta ba s.e. p  VIF

(Intercept)

-
18.4

89

-
18.48

9 3.872
4.E-

06 ***  7.6 7.6 3.1 0.017 *  

log(Total Number of Households)
2.94

3 7.051 0.610
3.E-

06 *** 4.1 -0.48 -1.15 0.34 0.157  1.1

log(Average Parcel Area (sf))       -0.97 -1.84 0.28 8.E-04
**
* 1.3

Average Parcel Percent Impervious       0.21 0.01 0.05 2.E-05
**
* 32

Square of Average Parcel Percent 
Imperviousc       

-
0.00

2
-1.E-

06
0.00

05 4.E-06
**
* 33

Average Percent Tree Canopy per 
Parcel       3.9 30.3 1.40 6.E-03 ** 1.9

Number of Renters in Census Tract

-
0.00

3 0.000 0.000
1.E-

10 *** 4.4       

Percent White >80% (0,1)

-
1.03

6 -2.723 0.400
1.E-

02 ** 1.5       

log(Median Income)
0.19

6 0.339 0.300
5.E-

01 *** 1.9       
Percent non-English speaking >0.3%
(0,1)

0.91
4 2.545 0.359

1.E-
02 ** 1.1       

Adjusted R2 0.3543  
0.29
06      

F statb 3.15E-11  
5.02
E-14      
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 Global Model: Full Model GWR Results (standardized)

 beta ba s.e. p  VIF Min Max
Significant

Count

Most In-
fluential
Count

(Intercept)

-
22.1

31

-
22.13

1 4.150
3.E-

07 ***  -46 17 0 0

log(Total Number of Households)
2.24

5 5.379 0.530
4.E-

05 *** 4.3 0.37 0.62 172 0

log(Average Parcel Area (sf))

-
0.35

4 -0.669 0.247
2.E-

01  1.5 -0.26 -0.06 103 0

Average Parcel Percent Impervious
0.20

7 0.013 0.043
3.E-

06 *** 38 -0.04 0.13 111 0

Square of Average Parcel Percent 
Imperviousc

-
0.00

2 0.000 0.000
6.E-

08 *** 37

-
0.00

1

-
0.000

1 134 0
Average Percent Tree Canopy per 
Parcel

1.76
0

13.65
0 1.451

2.E-
01  3.1 0.52 2.4 60 60

Number of Renters in Census Tract

-
0.00

2 0.000 0.000
3.E-

07 *** 5.1

-
0.00

2
-

0.001 172 0

Percent White >80% (0,1)

-
1.55

8 -4.093 0.374
5.E-

05 *** 1.8 -1.0 -0.7 172 112

log(Median Income)
0.76

1 1.316 0.289
9.E-

03 ** 2.4 -0.2 0.4 21 0
Percent non-English speaking >0.3%
(0,1)

0.71
7 1.996 0.309

2.E-
02 * 1.1 0.1 0.4 11 0

Adjusted R2 0.5289        

F statb         
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* significant at alpha=0.05, ** significant at alpha = 0.01, *** significant at alpha = 0.001
a fully standardized coefficient estimate
b F stat compared to full model
c the square of the average parcel percent impervious is included to capture a change in direction from positive to negative in the effect of this variable
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FIGURE CAPTIONS (LIST)

Figure 1.  Cumulative number of installation and program participants over time

Figure 2.  Density of all GI installations through the RiverSmart Homes Program 
from 2009 – 2014, overlaid on total population per census tract.

Figure 3. Survey responses from RiverSmart Homes participants to how they 
initially learned of the program.

Figure 4. Conceptual illustration of observed metrics compared to a time-
randomized iteration. Numbered circles represent the year of adoption 1, or 2. The
left-most column demonstrates the case of social influence clustering: the observed
DTC metric is expected to be less than the average time-randomized simulation 
iteration, while the observed R200 metric is expected to be greater than the 
average time-randomized simulation iteration. The right-most column 
demonstrates the case of growth to distant neighborhoods: the observed DTC 
metric is expected to be greater than the average time-randomized simulation 
iteration, while the observed R200 metric is expected to be less than the average 
time-randomized simulation iteration. Gray circles represent the area within a 
given buffer radius of each year 2 participant.

Figure 5a DTC comparison between simulated probability distribution and 
observed DTC (dashed line).  2010 percentile > 99.9; 2011 percentile =91.6%; 
2012 percentile =99.6%; 2013 percentile < 91.8%; 2014 percentile < 0.1%

Figure 5b Comparison between simulated probability distribution and observed 
R200 (dashed line).  2010 percentile <0.1%; 2011 percentile = 93.6%; 2012 
percentile > 99.9%; 2013 percentile > 99.9%; 2014 percentile >99.9%
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