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HIghlights 

 
  

• Lower resolution of LST and MRT data can still represent urban heat variations.  

• Street-level landscape features can explain most variations in urban spatial heat.  

• Higher density of buildings has a significant effect on reducing MRT (SRC: -0.12).  

• Positive relationship found between SVF and AT, MRT, LST (SRC: 0.11, 0.26, 0.55).  

• GSV images provide useful information about landscape elements and heat 
variations.  

•  
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Abstract 

In this study, we investigate the compatibility of specific vulnerability indicators and heat 

exposure data and the suitability of spatial temperature-related data at a range of resolutions, to 

represent spatial temperature variations within cities using data from Atlanta, Georgia. For this 

purpose, we include various types of known and theoretically based vulnerability indicators such 

as specific street-level landscape features and urban form metrics, population-based and zone-

based variables as predictors, and different measures of temperature, including air temperature 

(as vector-based data), land surface temperature (at resolution ranges from 30 m to 305 m), and 

mean radiant temperature (at resolution ranges from 1 m to 39 m) as dependent variables. Using 

regression analysis, we examine how different sets of predictors and spatial resolutions can 

explain spatial heat variation. Our findings suggest that the lower resolution of land surface 

temperature data, up to 152 m, and mean radiant temperature data, up to 15 m, may still 

satisfactorily represent spatial urban temperature variation caused by landscape elements. The 

results of this study have important implications for heat-related policies and planning by 

providing insights into the appropriate sets of data and relevant resolution of temperature 

measurements for representing spatial urban heat variations.  
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1. Introduction 

Cities worldwide are growing fast to accommodate the increasing global population. According 

to the United Nations New Urban Agenda, by 2050, the world's population is expected to double, 

which makes urbanization an inevitable trend (Habitat, 2017). The excess heat resulting from 

deforestation, land cover change, and the prevalence of impervious surfaces is great enough to 

raise the cities' average temperature by several degrees over the non-urbanized and rural parts 

and lead to a known phenomenon called the urban heat island effect (Oke, 1987). Increased 

temperature in cities impacts human health and well-being in several ways. However, the 

associated effects of heat exposure in cities are not spatially uniform (Chen et al., 2022). Land 

use, landscape features, surface covers, and morphological parameters make temperature 

distribution in cities disproportionate and cause disparities in the burden of heat exposure across 

sociodemographic groups (Hsu et al., 2021; Voelkel et al., 2018). While proactive heat 

mitigation strategies at the local level are integral to compensate for the severity of extreme heat 

exposure, a lack of spatially explicit information on hotspots would undermine the specificity 

and applicability of the policies (Preston et al., 2011). Hence, the demand for systematic 

representations of spatial heat heterogeneity within cities is rising (Meng et al., 2018; Peng et al., 

2020). 
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Representation of heat exposure variation can be facilitated through empirical measurements, 

allowing the direct observation of spatial and temporal variation in temperatures. For example, 

LANDSAT and MODIS images are widely applied to classify land cover/ land use changes and 

assess the association between spatiotemporal factors and the urban heat island effect (Chen, 

2021; Deilami et al., 2016; Guha et al., 2018; Mukherjee and Singh, 2020; Schwarz et al., 2011). 

While empirical techniques such as satellite imagery and in-situ temperature measurements have 

moderate spatial and temporal resolutions, physically based modeling may provide higher 

resolution exposure representation by involving an array of physical and meteorological 

parameters at finer scales. Finer scales may be especially useful when engaging with residents 

because they enable more convincing causal relationships linked to the variation in temperatures 

(Berardi et al., 2020; Gunawardena and Steemers, 2019; Kianmehr and Lim, 2022). Moreover, 

modeling can incorporate more salient aspects of urban heat than remotely sensed infrared 

reflectance. For example, solar irradiance geometry models apply urban 3D models and 

meteorological data to estimate citizens' thermal comfort level in urban areas with a high 

resolution and through a human-centric point of view. Ultimately, however, the value of finer 

scale data depends on its intended use. For example, (Wu et al., 2019) found that coarse regional 

air temperature data were sufficient to predict heat mortality during heat waves.  

Urban planners are increasingly concerned with how decisions about the built environment can 

influence microclimate, giving rise to a need for models that can more precisely relate elements 

in the built environment with temperature impact (Keith and Meerow, 2022). Identification of 

underlying reasons for heat vulnerability and exposure variations within cities requires choosing 

appropriate proxies and relevant resolution of data (Karanja and Kiage, 2021). In recent years, 

advancements in "big data" acquisition and analysis have facilitated the operationalization of the 

                  



5 
 

known and theoretically based predictors, which could theoretically result in more precise 

predictions and explanations of spatial heat vulnerability associated with landscape elements. For 

instance, Google Application Programming Interface (API) for street view images (Google Street 

View, hereafter, "GSV") provides easy access to the extensive and invaluable sets of data taken 

from human-centric views (Middel et al., 2019), which allows for capturing three-dimensional 

elements with much higher resolution (Xu et al., 2012). In urban heat studies, street-level 

landscape features and urban form metrics derived from profile-based GSV images have been 

applied to identify the type, density, and distribution of urban greenery (Li et al., 2015b), track 

the temporal change of green index (Li, 2021b), and assess the accessibility of different 

neighborhoods and communities to the green areas (Li et al., 2015a).  This promising source of 

data, coupled with other social indicators of heat vulnerability, such as poverty rate, educational 

attainment, ethnicity, gender, age, and historical segregation practices (Cutter et al., 2003; 

Dialesandro et al., 2021; Hoffman et al., 2020; Uejio et al., 2011; Wilson, 2020) can be used to 

create a picture of physical and social vulnerability of different localities toward the heat risk 

with a high resolution. 

Whereas such suites of individual indicators leverage fine-scale analysis of temperature 

variations, aggregation techniques can change the nature of the gained information (Abson et al., 

2012). A mismatch in spatial resolution among exposure data and physical and social 

vulnerability indicators (hereafter, vulnerability indicators) obstructs the consistent development 

of metrics and accurate representation of disparities (Cutter and Finch, 2008; Ho et al., 2015). 

This issue mainly emanates from a phenomenon called Modifiable Areal Unit Problem (MAUP) 

(Openshaw, 1984). The MAUP happens as the result of two distinct yet related conditions: the 

scale problem and the zoning effect (Fotheringham and Wong, 1991). The scale problem is 
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associated with the aggregation of areal units' (e.g., pixel) data into the adjacent units, resulting 

in coarser units of analysis with the same areal size. In contrast, the zoning problem is related to 

the use of an alternative unit of analysis with different sizes while the total number of units is 

held constant (Ho et al., 2015; Ju et al., 2021). Both circumstances can change the results in 

multivariate analyses (Jelinski and Wu, 1996). For example, when the unit of analysis for the 

exposure and vulnerability analysis is determined arbitrarily, the analysis results may not reflect 

the real spatial heat heterogeneity. Such biased results would also hinder the accurate 

identification of suitable exposure and vulnerability indicators and proxies. 

Selecting appropriate vulnerability indicators and data resolutions congruent with system 

dynamics is challenging, yet it is central to ascertaining appropriate heat mitigation strategies. 

There are many conceptual models in heat-related studies that scrutinize heat vulnerability at a 

fine scale to benefit site-specific policy-making (Conlon et al., 2020; Johnson et al., 2012; 

Mushore et al., 2018; Song et al., 2020). However, except for a few studies (Ho et al., 2015; 

Sobrino et al., 2012; Zhou et al., 2014), the literature lacks systematic analysis of data types and 

resolutions needed for the accurate detection of spatial heat variation and explainability of that 

variation. Therefore, this paper aims to explore what information can be gained about physical 

and social aspects of heat vulnerability and heat exposure through a data-driven approach that 

fuses different kinds of spatial data at a range of resolutions. As high-resolution data is not 

readily available for many locations due to the resource limitations and computational expenses 

(Deilami et al., 2018), this study specifically aims to evaluate the feasibility of using lower-

resolution temperature data and new sources of vulnerability indicators to explain intra-urban 

heat variations. The key research questions this study seeks to answer are: first, what is the 

satisfactory range of exposure data resolution for accurately representing spatial temperature 
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variations? Second, which groups of vulnerability indicators can better explain the variations in 

air temperature, land surface temperature, and mean radiant temperature? And, finally, what is 

the effect magnitude of specific landscape features and urban form metrics on changing 

temperatures? And how do the direction and magnitude of this effect differ in the whole study 

area and high-density zones? 

2. Data and Method 

2.1.Study Area 

Taking the city of Atlanta, Georgia, in the Southern United States as the case study, we 

systematically assess the compatibility of specific vulnerability indicators and temperature data 

and the suitability of specific spatial data at a range of resolutions for the representation of spatial 

temperature variations within cities. For this purpose, we employ various types of predictors, 

including specific street-level features, socio-demographic-based, and zone-based variables, to 

explain spatial air temperature (AT), land surface temperature (LST), and mean radiant 

temperature (MRT) variation within the city of Atlanta. The vector and raster-based data, 

including field measurements of air temperature, satellite imagery, and modeling data of various 

resolutions, are treated as dependent variables in the multivariate regression analyses.  

The city of Atlanta has a population of around 500,000 and is also growing quickly (United 

States Census Bureau, 2021). Located in Fulton County, the city of Atlanta is characterized by 

humid subtropical weather with four seasons (Sun et al., 2018). Simulation results predict that 

Atlanta will experience higher frequency and longer duration of heatwaves (Habeeb et al., 2015). 

According to a survey, only 57% of respondents can afford or use central air conditioning when 

needed (Larsen et al., 2022). In addition, there is a disproportionate exposure to the heat in 
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Atlanta, where the greater burden of the urban heat island effect falls on the poor (Chakraborty et 

al., 2019). 

2.2.Data 

According to studies such as (Adger, 2006; Guillard-Gonçalves and Zêzere, 2018; Turner et al., 

2003), in this paper, we refer to vulnerability indicators as the composite of biophysical and 

socioeconomic indices. Based on theories related to physical and social vulnerability, we used 

three types of vulnerability indicators, including street-level landscape features and urban form 

metrics, population-based, and zone-based data, as explanatory variables in the regression 

analyses. Moreover, to study spatial temperature variation, we employed three exposure data 

types as dependent variables in multivariate regression analyses: air temperature, land surface 

temperature, and mean radiant temperature. Thermal comfort provided by shading and wind 

speed is highly dependent on fine-scale landscape features and urban form metrics. Studying the 

variations in thermal comfort and shading was the primary motivation for using the mean radiant 

temperature as one of the exposure data types in this study. Air and surface temperature might 

not capture thermal comfort as thoroughly as other heat indexes, yet they are the most prevalent 

and accessible types of temperature data and are worth further exploration to test their suitability 

for representing spatial heat variations.  

2.2.1. Exposure data 

Air Temperature (AT) 

Air temperature data were obtained from urban heat campaign (UHC) measurements for Atlanta. 

Funded by NOAA, over the past five years, the urban heat campaign has taken place in several 

localities in the U.S. ("Mapping Campaigns," 2022). In this study, we used the afternoon 
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measurements data (3:00 pm – 4:00 pm) of the urban heat campaign in Atlanta, which took place 

on September 4th, 2021, and contained 23,386 observation points. Morning and evening 

measurements from this campaign are also available. However, given the significance of heat-

related studies during the hottest hours of the day and one of the purposes of this study, which is 

to analyze the shading effect of street-level elements, we utilized the afternoon data from the 

UHC measurements. Further information about air temperature data employed in this study can 

be found in Table 1. This vector-based source of data is treated as one of the dependent variables 

in our multivariate regression analyses. In Figure 1, we represent the normalized (scaled to the 

maximum-minimum range) spatial distribution of air temperature along with other types of heat 

exposure data used in this study (land surface temperature and mean radiant temperature) for 

comparison purposes. Figure 1(a) shows the normalized spatial distribution of air temperature 

data, the study area, and the observation points of this study. 

Land Surface Temperature (LST) 

The land surface temperature data was acquired through the bulk download of Landsat 8 images 

from the United States Geological Survey (USGS) website. Thermal infrared sensor (TIRS) 

images of Atlanta for the summer months (June 1 - September 30) of years between 2019 and 

2021 were collected (a total of 14 scenes) and used for processing the raster data, including 

masking clouds and handling missing pixels.  In the next step, the actual daytime land surface 

temperature for each grid point was calculated by converting the raster values into degrees of 

centigrade and taking means across all scenes. As a result, a single-layer daytime land surface 

temperature image was created for Atlanta city. We shall note here the original resolution of the 

Landsat TIR sensor is 100 meters. However, the resolution of raster data used in this study has 

been changed to 30 meters as a part of the Analysis Ready Data (ARD) dataset, prepared by the 
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USGS, to match the resolution of other (visible band) data distributed in ARD. For more 

information about the resolution of Landsat images please refer to the USGS website (USGS, 

2023). This dataset was also used as a dependent variable in multivariate regression analysis 

(Figure 1(b)).  

Mean Radiant Temperature (MRT) 

MRT more closely represents the thermal comfort that humans feel because it is derived by 

summing all shortwave and longwave radiation fluxes that the human body is exposed to (both 

directly and reflected) (Lindberg et al., 2008). However, this means that MRT cannot easily be 

measured as a spatial dataset and is usually calculated through mathematical modeling. Using 

SOLWEIG (SOlar and LongWave Environmental Irradiance Geometry) model, besides spatial 

variations of 3D radiation fluxes, we simulated the shadow pattern and the sky view factor of 

Atlanta's urban settings, taking into account the influence of shade on the thermal comfort of the 

human body. The two major inputs of the model are terrain features including ground 

topography and building configurations, and meteorological data, such as air temperature, 

relative humidity, wind speed, direct radiation, and diffuse radiation, making it a reliable method 

for estimating human thermal comfort (Li, 2021a). For Atlanta, meteorological data and the 

high-resolution (1 m) 3D urban model generated from LiDAR and aerial images were used as 

inputs of SOLWEIG to calculate the spatial distribution of average mean radiant temperature 

and, thus, the human outdoor thermal exposure level across neighborhoods. More information 

about the modeling process can be found in our previous study (Li, 2021a). This raster-based 

data also was treated as the dependent variable in our regression analysis (Figure 1(c)). Further 

details about the distribution and original resolution of this dataset can be found in Table 1. LST 

and MRT data of Atlanta show a similar pattern for the distribution of hotspots in this city, where 
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the highest land surface and mean radiant temperature were observed in industrial, high-density 

commercial, and office institutional zones. The most elevated air temperatures were observed in 

the southern part of the city, where the high-density residential and single-family residentials are 

located. The distinction between the distribution of hot spots and cool spots of air temperature 

and other measures of heat, such as land surface temperature, has been noted in other studies. 

This can be attributed to the anthropogenic activities and physical and landscape parameters that 

affect air temperature variations in urban areas (Amani-Beni et al., 2022). 

 
(b) (a) 
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Figure 1. Normalized spatial distribution of air temperature (a), land surface temperature 

(b), and mean radiant temperature (c), the three dependent variables used in the regression 

analyses. 

Table 1. Information about the original resolution and distribution of each type of heat 

exposure data 

 Air Temperature Land Surface 

Temperature 

Mean Radiant 

Temperature 

Original resolution 23,386 points with a 

10 m distance 

At the resampled ~100 ft 
(30 m) resolution 
 

~2 ft (1 m) 

Minimum 25.45 C 31.55 C 34.71 C 

Maximum 30.48 C 50.84 C 58.14 C 

Mean 27.95 C 40.11 C 49.08 C 

Standard deviation 0.81 4.13 7.46 

 

(c) 
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2.2.2. Heat vulnerability indicators 

Landscape features and urban form metrics   

In this study, vulnerability indicators refer to both biophysical and social aspects of vulnerability, 

such as lack of vegetation and shading, increased sky view factor, the prevalence of impervious 

surfaces, and a larger population of marginalized groups. In our study, landscape features and 

urban form metrics are considered as one of the subsets of vulnerability indicators and refer to 

morphological characteristics such as sky view factor and street-level built environment and 

landscape features that pedestrians can directly perceive. To collect data related to such physical 

aspects of heat vulnerability, we used Google Street View images of Atlanta. Using the Urban 

Heat Campaign measurement point locations, we obtained a list of available images in different 

years and months for those measurement points. We filtered the image list for the September 

years between 2017 to 2019 to get the list of the most recent and relevant images for download. 

This list contained 12,321 panorama identification numbers (I.D.). As for each panorama I.D., 

four images are available; overall, we downloaded 49,284 images for those specific locations.  

To quantify the landscape features and built environment of downloaded images, we used 

Pyramid Scene Parsing Network (PSPNet), a superior framework for pixel-level predictions 

(Zhao et al., 2017). This image scene parsing and semantic segmentation algorithm enabled us to 

quantify 150 features (including buildings, trees, grass, road, sky, water, person, and car) that 

appeared in the downloaded images and analyze the physical characteristics of desired locations. 

Figure 2, created by the authors, illustrates the process of quantifying street-level elements in 

Google Street View images using PSPNet. 
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Figure 2. Street View image from Google API (left) and the result of image parsing using 

PSPNet (right) 

We further used GSV panoramas to calculate the sky view factor (SVF), which refers to the ratio 

between the radiance received by a planar ground and the entire hemispheric radiation. The value 

of SVF ranges from 0 to 1, where 0 represents the total enclosure of the urban environment by 

trees or buildings, and one exhibits complete openness. We generated hemispherical images from 

the GSV panorama images using a geometrical transform model and quantified the visible 

portions of the sky to calculate the SVF of each observation point. For further details about 

calculating SVF from GSV images, refer to (Li and Ratti, 2018).  

Population-based data 

Besides physical and morphological metrics, sociodemographic variables have been shown to 

have explanatory power over spatial temperature distribution (Karanja and Kiage, 2021). This is 

because of discriminatory housing and urban planning processes and residential segregation. 

Socioeconomic indices such as race, income, education, gender, and age can be used to assess 

the social aspects of heat vulnerability and risk associated with heat in different localities (Harlan 
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et al., 2006; Uejio et al., 2011; Wilson, 2020). We obtained population data for our temperature 

observation points from the City of Atlanta’s open data portal, including total population, 

population density, and the percentage of each race (White, African American, Hispanic, and 

Asian) in 2010. We included those variables in stepwise regression analysis to identify the most 

important population-based variables to include in our regression models. 

Zone-based data 

Urban heat island intensity is associated with the dominant land use and land cover zones (Weng 

et al., 2007; Yang et al., 2017). The urban thermal environment in a city varies due to the 

differences in land use and surface characteristics (Chen et al., 2023; Hart and Sailor, 2009), and 

the effects of these differences may not be captured through the street-centric landscape elements 

derived from GSV. To incorporate the effect of broader land use and land cover characteristics in 

the analysis of intra-urban heat variation, we included Atlanta’s zone class categories in our 

analyses. Atlanta's zone class categories were obtained from the open data portal of the City of 

Atlanta. We also examined other categorical types of data, such as land use, neighborhood 

planning units, and statistical areas. However, we found that the zone class categories 

contributed the most to changes in temperatures. 

2.3.Methodology 

As discussed above, a variety of methods were adopted to extract and prepare data for statistical 

analysis. Figure 3 reviews the workflow of the present study. 
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Figure 3. Workflow diagram of the present study 

2.3.1. Changing data resolution 

To examine the suitability of specific spatial data at a range of resolutions for the representation 

of spatial temperature variations, we downgraded the resolution of raster-based exposure data 

(LST and MRT) using the resampling method (Bilinear interpolation technique) in GIS software. 

The bilinear interpolation technique, through calculating the weighted average of each of four 

nearby grid cells, allowed us to generate new values for the output grid cells and downgrade the 

resolution of raster data. For the LST data, we downgraded the resampled resolution of ~100 ft 

(30 m) to 200 ft (~61 m), 300 ft (~91 m), 400 ft (~122 m), 500 ft (~152 m), 600 ft (~183 m), 800 

ft (~ 244 m), and 1000 ft (~305 m). Also, for the MRT, we reduced the original resolution from 

~2 ft (1 m) to 8 ft (~2 m), 16 ft (~5 m), 32 ft (~10 m), 48 ft (~15 m), 64 ft (~20 m), 96 ft (~29 m), 

and 128 ft (~39 m). We should note here that as our air temperature data is vector-based, 

changing resolution does not apply to this data type in our analysis. So, we treated LST and 

MRT with various spatial resolutions alongside the original resolution of AT as dependent 

variables in our multivariate regression analyses.  
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We used coefficient determination (R-squared) that measures the goodness-of-fit to compare the 

explanatory power of land surface and mean radiant temperature data at a range of resolutions 

for the representation of spatial heat variations.  

2.3.2. Statistical analyses 

To identify the important variables to include in our regression models, we used forward and 

backward stepwise regression. Based on the outputs of this feature selection method, we 

developed various models with different groups of predictors (i.e., landscape features and urban 

form metrics, population-based, zone-based variables) and dependent variables (i.e., AT, LST, 

and MRT of various resolutions). We also checked for multicollinearity and removed variables 

that showed a strong relationship with each other. The final set of selected variables for the 

regression model can be found in Table 2. We used JMP software to perform ordinary least 

squares (OLS) regression and used resulting R-squared (and adjusted R-squared for the nested 

models) values to study the power of different groups of predictors in explaining the variations in 

AT, LST, and MRT over a range of resolutions (Equation 1). The initial total observation points 

in our study were 8895, and each observation point was located at least a 10-meter distance from 

the adjacent points. Equation 1 shows the statistical specification of the ordinary least squares 

regression. 

 

Where Yi is one of the dependent variables, including AT, LST, and MRT at a specific 

resolution at location i; Xg,i is the vector of landscape features, and urban form metrics (GSV-

driven variables) observed at location i; Xp,i is the vector of population-based variables in the 
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area in which location i falls; Xz,i is the vector of zone-based variables in which location i falls; 

β1, β2, and β3 are vectors of the estimated coefficients of predictor variables; εi is the error term 

observed for location i. 

Table 2. Selected independent and dependent variables for multivariate regression analyses 

Independent Variables Dependent 

Variables 

Xg: Landscape features and urban form metrics (GSV- driven 

variables): Plant, grass, sidewalk, path, house, building, car, water, 

sky view factor (SVF) 

Xp: Population-based variables: Population, black population 

Xz: Zone-based variables: Zone class categories 

AT, LST, and MRT 

(Various 

resolutions)  

Following OLS estimation of the coefficients, we also checked for spatial autocorrelation. 

Details about those analyses can be found in Appendix A.   

To further explore the role of shading and vegetation in temperature variations, we investigated 

the direction and magnitude of the effect of specific landscape features and urban form metrics 

(such as plants, buildings, and the sky view factor) on temperature exposure data using the 

standardized regression coefficient (SRC). The SRC ranges between -1 and +1 and indicates both 

the direction and magnitude of changes in the response variable that occur with changes in the 

independent variable. To address RQ3, we estimated regressions using two subsets of the data: 

(1) the whole study area and (2) high-density zones (high-density residential, commercial, and 

office institutional zones) only. The reason for comparing the estimated coefficients on the high-

density subset of the data is that we hypothesized very tall buildings, by providing shading and 
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reducing the sky view factor in these areas, would lower the mean radiant temperature (MRT) 

and perhaps moderate the effect of vegetation. 

3. Results  

3.1.Spatial resolution effect 

Figures 4 and 5 show the R-squared value of the regression model (Equation 1) of LST and MRT 

data at a range of resolutions. The Y axis in these plots represents the R-squared values of the 

regression models, and the X axis shows the resolution of dependent variables (LST and MRT). 

According to Figure 4, the R-squared value of the regression model or the explanatory power of 

the independent variables included in the model did not change significantly when the LST data 

resolution was downgraded to 500 ft (~152 m). By lowering the resolution after 500 ft, the R-

squared value started to drop at a higher rate. Overall, downgrading the LST data resolution from 

~100 ft (30 m) to 1000 ft (~305 m) changed the R-squared value from the range of 0.7 to 0.6. 

This pattern suggests that even lower resolutions of LST data can still be appropriate for 

explaining the variations in land surface temperature. A similar pattern is observed for MRT 

while decreasing spatial resolution (Figure 5). 

The higher range of R-squared values of the regression models with LST data at various 

resolutions implies groups of independent variables considered in this study (Table 2) have 

higher explanatory power for explaining variations in land surface temperature compared to the 

mean radiant temperature. 
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Figure 4. Regression results (R-squared value) of LST models with different resolutions 

 

Figure 5. Regression results (R-squared value) of MRT models with different resolutions 

3.2.The explanatory power of different groups of vulnerability indicators 

As mentioned in the previous sections, we included landscape features and urban form metrics 

(GSV-driven variables), population-based, and zone-based variables in our regression model as 

predictors. To study the effect of each group of these variables separately, we included them in 

the model one by one, ran the regression model one at a time, and compared the adjusted R-

squared as different numbers of variables were included in each model. An F-test also was 
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performed to identify whether the more complex models (models with more variables) have a 

significant improvement over the simpler models (models with a reduced number of variables). 

Pairwise comparisons of the F-ratio (using the ANOVA test) demonstrate that more complex 

models offer significant improvements over the simpler models for each dependent variable. 

More details about the F-test comparisons can be found in Appendix B. 

Figure 6 shows the adjusted R-squared values of each of those regression models with air 

temperature, land surface temperature, and mean radiant temperature in their original resolutions 

(at the resampled ~100 ft (30 m) resolution for LST and ~2 ft (1 m) for MRT) as the dependent 

variables. According to this plot, the regression results for the LST data show the highest 

adjusted R-squared values (0.55, 0.55, 0.72) compared to the MRT (0.52, 0.52, 0.56) and AT 

(0.20, 0.29, 0.47). Moreover, this figure shows that the GSV-driven variables have higher 

explanatory power for explaining MRT and LST data variations than the air temperature. 

However, it appears that the population-based and especially the zone-based variables have the 

most important impacts in explaining the variations in air temperature. This fact suggests air 

temperature of different locations in a city is more associated with socio-demographic and land 

use/ land cover characteristics of the area rather than the landscape features and urban form 

characteristics. 

In addition, the low adjusted R-squared value of the air temperature regression model with GSV-

driven variables implies the air temperature data would not necessarily benefit from higher 

spatial resolution data collection since it is already not explainable by high-resolution landscape 

features and urban form metrics data. However, higher temporal resolution might mitigate the 

low explanatory power of these variables in regression models, which requires further 

investigation.      
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Based on Figure 6, we also noticed while the population-based variables would help explain air 

temperature variations, they did not improve adjusted R-squared values for the MRT and LST 

regressions. However, the zone-based data had a positive effect in improving the adjusted R-

squared value of the LST regression result. Overall, among variables considered in this study, 

landscape features and urban form metrics (GSV-driven variables) were found to be the most 

important groups of variables for explaining the variation in MRT and LST. 

 

Figure 6. Comparing regression models with different groups of predictors and dependent 

variables (with original resolutions) 

As the role of GSV-driven variables in explaining LST and MRT variations proved to be 

significant, we also studied the explanatory power of this group of variables with the lowest 

resolutions of LST and MRT data. Figure 7 represents the results (R-squared) of regression 

models in which the GSV-driven variables were included as independent and the lowest 

resolution LST and MRT data as the dependent variables. We also reported the regression result 

with the original resolutions in this plot to compare the impact of data resolution on the 

explanatory power of this group of variables.  
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As expected, lowering data resolutions for LST and MRT lowered the explanatory power of the 

high-resolution GSV-driven variables. However, even in the lowest resolutions studied in this 

paper (1000 ft (~305 m) for the LST and 128 ft (~39 m) for the MRT data), those variables still 

showed a relatively moderate potential for explaining the variation in LST and MRT (R-squared 

value of 0.43 for the LST and 0.35 for the MRT regression model).  

 

Figure 7. Comparing the explanatory power of GSV-driven variables regression models 

with different resolutions of LST (left) and MRT (right) data 

Table 3 presents standardized regression coefficients with only GSV-driven variables included in 

models. As this table suggests, most of the landscape features and urban forms metrics, even in 

lower data resolution, have a statistically significant effect (P-value<0.05) on changing land 

surface and mean radiant temperature. Moreover, according to this table, the direction and 

magnitude of the effect of GSV-driven variables showed a consistent trend among higher and 

lower resolutions of LST and MRT data. This finding demonstrates the application of GSV-

driven variables in explaining land surface and mean radiant temperature variations. Moreover, it 

suggests the usefulness of the lower resolutions of LST and MRT data for representing spatial 

heat heterogeneity in the case of high-resolution data paucity. 
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Table 3. Standardized regression coefficients with only GSV-driven variables included in 

the model 

 LST MRT 

Original 

resolution 

 (30 m) 

305 m 

resolution 

 

Original 

resolution 

 (1 m) 

39 m 

Resolution  

Plant
** -0.09* -0.08* -0.08* -0.09* 

Grass -0.20* -0.21* -0.09* -0.10* 

Sidewalk 0.05* 0.03* -0.00 0.05* 

Path -0.02* -0.01 -0.01 -0.01 

House -0.02* -0.03* -0.04* -0.06* 

Building 0.33* 0.29* 0.05* 0.06* 

Car 0.07* 0.08 -0.00 0.02* 

Water -0.00 -0.01 0.01 0.02* 

SVF 0.42* 0.34* 0.62* 0.47* 

                   *Significant at 95% confidence level 

** Plant in this table refers to any types of greenery, including small trees, shrubs, 

herbs, and mosses which are distinct from grass 

 

3.3.Effect magnitude of specific landscape features and urban form metrics on 

temperatures variations in the whole study area and high-density zones 

According to Table 4, plants in both the whole study area and high-density zones are 

significantly (with P-value<0.05) related to the AT, LST, and MRT. As it was the pattern with 

the full dataset, vegetation parameters (plants and grass) showed a negative relationship with AT, 

LST, and MRT. However, the magnitude of their effects on AT, LST, and MRT was slightly 

different, with high-density zones having a slightly reduced effect of plants and grass on air 
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temperature (SRC value of -0.11 and -0.18 for the whole study area compared to -0.06 and -0.18 

for the high-density zones).  

The direction and strength of the relationship between buildings and temperature-related data 

were found to be different in the whole study area and high-density zones. For example, while 

buildings showed a statistically insignificant positive (+0.01) relationship with MRT for the 

whole study area, in the high-density zones, buildings had a significant negative effect (-0.12) on 

MRT. This result implies that the 1% increase in building density would decrease MRT by 0.12 

and is related to the shading effect of buildings in high-density residential and commercial zones. 

However, the relationship between the buildings and LST (both in the whole study area and 

high-density zones) remained positive, suggesting that an increase in building density would lead 

to a rise in the land surface temperature. The association of land cover (in this case, built areas) 

and land surface temperature can explain such a pattern. The relationship between air 

temperature and buildings both in the whole study area and the high-density zones was found to 

be statistically insignificant. 

Table 4 also shows the significant positive relationship between SVF and all types of 

temperature data in the whole study area and high-density zones, emphasizing that the increase 

in the street’s openness would lead to a rise in temperatures. SVF showed the most substantial 

effect on changing MRT. However, the magnitude of this association proved to be smaller for 

the high-density area compared to the whole study area. This difference was especially 

significant for the LST data, where the magnitude of association from 0.26 dropped to 0.09.  

Table 4.  Standardized regression coefficients of specific landscape features and urban 

form metrics with all groups of variables included in the model 
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 Whole Study Area High-Density Residential, Commercial and 

Office Zone 

AT LST MRT AT LST MRT 

 Original resolution 

 (30 m) 

Original resolution 

 (1 m) 

 Original resolution 

  (30 m) 

Original resolution 

 (1 m) 

Plant -0.11* -0.04* -0.05* -0.06* -0.04* -0.08* 

Grass -0.18* -0.07* -0.02 -0.18* -0.10* -0.17* 

Building -0.02 0.21* 0.01 0.00 0.12* -0.12* 

SVF 0.11* 0.26* 0.55* 0.06* 0.09* 0.33* 

*Significant at 95% confidence level 

 

4. Discussion 

4.1.The spatial resolution effect 

Downgrading the resolution of both raster-based heat exposure data examined in this study (LST 

and MRT) didn’t affect the R-squared values of regression models significantly. For the LST 

data, the explanatory power of predictors for explaining the variations in land surface 

temperature remained almost stable up to the downgraded resolution of 500 ft (~152 m). It's 

worth noting that, as described in the "Data" section, we used down-sampled Landsat TIR sensor 

data with a resolution of 30 meters (approximately 100 feet). As the native resolution of Landsat 

TIR sensor data is 100 meters, aggregating pixel sizes of our data and reducing the resolution to 

this range did not significantly reduce the accuracy of the gained information. This may explain 

why the R-squared values of LST regression models using data with a resolution in the range of 

about 100 meters did not decrease significantly.  

                  



27 
 

For the MRT data, up to the downgraded resolution of 48 ft (~15 m), the R-squared
 
values of the 

regression models remained within the range of the original data resolution. These findings 

support the use of lower-resolution LST and MRT data in explaining temperature variations 

when higher-resolution data is unavailable due to resource and computational constraints. 

Dropping the R-squared values of the regression models with the downgraded data resolution 

can be explained by the Modifiable Areal Unit Problem (MAUP). Coarser units of analysis 

resulting from aggregating the adjacent pixels and smoothing pixel values introduce spatial data 

quality concerns (Griffith et al., 2015; Marceau, 1999). Despite this fact, according to studies 

such as Sobrino et al. (2012), the spatial resolution of LST data could be as low as 165 ft (~50 m) 

to represent the differences in urban heat island effect between districts (Sobrino et al., 2012). 

Wu et al. (2019) also found no significant change in the association between adverse health 

outcomes and land surface temperature at three spatial resolutions (zip codes, 12.5 km grids, and 

1 km grids) (Wu et al., 2019). Although these findings align with the current study's results and 

support lower data use to represent variations in MRT and LST, data resolution should be chosen 

based on the specific purpose of the studies and careful consideration of the physical 

phenomenon being represented. This notion is especially crucial when producing heat risk 

hotspots using spatial vulnerability and exposure data, while the data is usually aggregated to 

match the employed spatial units (e.g., census tract, postal code) (Ho et al., 2015). Results of this 

study have important implications for heat-related modeling and studies that use heat exposure 

data for estimating heat morbidity (Wang et al., 2021) and the citizen’s need during extreme heat 

events (Kianmehr and Pamukcu, 2021). 

4.2.The explanatory power of different groups of vulnerability indicators 
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Examining different groups of vulnerability indicators showed that population and zone-based 

variables have the most important impacts in explaining the variations in air temperature. The 

association of air temperature with socio-demographics and land use/ land cover characteristics 

can explain this observation (Ngarambe et al., 2021). Moreover, in our analyses, landscape 

features and urban form metrics (GSV-driven variables) showed the highest explanatory power 

for explaining LST and MRT variations. It is widely acknowledged that land surface temperature 

is strongly influenced by local landscape features (e.g., plants, trees, and grass) and urban form 

metrics (e.g., urban geometry, the sky view factor, aspect ratio, etc.) (Gage and Cooper, 2017; 

Yang et al., 2021). Recent studies have shown the application of GSV images for estimating sky 

view factor, urban greenery, shade provision, and residents’ outdoor heat exposure (Li, 2021b; Li 

and Ratti, 2019, 2018). In this study, GSV-driven variables, even in the lowest resolution of data, 

showed moderate explanatory power for explaining the variations in LST and MRT data. 

However, the lower adjusted R-squared values of regression models with air temperature as the 

dependent variable in this study can be attributed to the more compound relationship between 

local air temperature and factors such as anthropogenic activities, physical and landscape 

characteristics (Amani-Beni et al., 2022). 

4.3.The effect magnitude of specific landscape features and urban form metrics 

For vegetation parameters examined in this study (plant and grass), the direction of their effects 

on temperatures was negative and consistent across all three types of exposure data, confirming 

the results of previous studies (Dimoudi and Nikolopoulou, 2003; Giridharan et al., 2008). The 

most notable impact of buildings observed on MRT in high-density zones where a significant 

negative effect was recorded (-0.12), and this pattern was not observed with LST. A similar 

pattern regarding the shading effect of buildings and their role in reducing MRT levels in urban 
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environments was observed in previous studies (Lindberg and Grimmond, 2011; Nasrollahi et 

al., 2021). The role of the sky view factor in changing temperature was also significant. The 

direction of the SVF effect on temperature exposure data was consistent (a significant positive 

effect) across all variables in the whole study area and high-density zones. This finding is in line 

with the other studies. For example, a study in Phoenix, Arizona, showed that the sky view factor 

derived from GSV images has a statistically significant positive correlation with daytime and 

nighttime LST (0.52 and 0.11, respectively) (Zhang et al., 2019). Similarly, in a study in Beijing, 

China, it was shown that highly shaded areas (SVF<0.3) would significantly reduce the 

frequency of thermal discomfort (He et al., 2015). To this, our study additionally shows that the 

effect magnitude of this variable decreased in high-density zones. This might be explained by the 

sparse and homogenized tree density in high-density zones (Table C1). As trees play a central 

role in controlling SVF, this can affect the strength of the association between SVF and 

temperatures. However, in high-density areas, buildings show a strong negative relationship with 

the SVF (Table C2), suggesting the increase in buildings would decrease the street openness 

(SVF) and would ultimately help with lowering temperatures (especially mean radiant 

temperature). This finding provides an important piece of evidence about the usefulness of other 

street-level elements than trees (such as buildings) to impede direct solar radiation and improve 

thermal comfort in urban environments. 

4.4.Limitations and Future Research 

This study has its limitations. In terms of data sources, we only included air temperature, land 

surface temperature, and mean radiant temperature at a range of resolutions as the heat exposure 

variables. However, there are also other heat indexes such as Wet Bulb Globe Temperature 

(WGBT), Universal Thermal Comfort Index (UTCI), Physiological Equivalent Temperature 
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(PET), and Predicted Mean Vote (PMV) that involve human body characteristics and humidity, 

radiation, and wind speed besides temperature to measure thermal comfort level (Höppe, 1999; 

Jendritzky et al., 2012; Wei et al., 2022a, 2022b). Investigating the appropriate resolution ranges 

of such heat measures can be the subject of future research. Moreover, in this study, we just 

focused on a limited range of spatial resolution, while the effect of temporal resolution of data is 

also substantial and requires further investigation. Also, a wider range of spatial data resolution 

can be applied for more comprehensive conclusions. In terms of methods, we just employed one 

resampling technique (bilinear interpolation) for changing data resolutions. However, different 

resampling techniques (cubic convolution, nearest neighbor, etc.) might slightly change the 

results. Therefore, further research is needed to study the choice of resampling method and its 

influence on the results. Finally, we note the current analysis was conducted only for Atlanta, so 

the results are not generalizable to locations with different climates, landscapes, and 

demographic characteristics. Cross-site evaluations can be performed in future research to 

explore the consistency of observed results. 

5. Conclusion 

In this paper, we tried to study the satisfactory range of exposure data resolutions for accurately 

representing spatial temperature variations. Moreover, by including different types of physical 

and social vulnerability metrics, we explored which groups of vulnerability indicators can better 

explain the variations in temperature-related data. Further, we investigated the effect of specific 

landscape features and urban form metrics on changing temperatures in urban environments. 

Finally, we compared the effect of those variables on temperatures in the whole study area and 

high-density zones to check for the role of specific street-level elements in providing shading and 

thermal comfort.  
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The results of this study revealed that downgrading resolutions of land surface temperature (up to 

152 m) and mean radiant temperature data (up to 15 m) would not substantially reduce the power 

of social and physical vulnerability metrics in explaining the variations in temperatures. 

Therefore, the lower resolution of LST and MRT data may still satisfactorily represent spatial 

urban temperature variations. Moreover, among vulnerability indicators studied in this paper, 

landscape features and urban form metrics showed the highest explanatory power in regression 

models. While the sky view factor proved to have the most influence in changing temperatures in 

the whole study area, buildings showed a significant effect on reducing the mean radiant 

temperature (with the SRC value of -0.12) in high-density zones. These findings highlight the 

usefulness of street-level elements in providing shading and thermal comfort in high-density 

urban areas. The results of this study provide insights vis-a-vis appropriate sets of data and 

relevant resolution of temperature measurements for representing spatial urban heat variations 

which have important implications for heat-related policies and planning. 
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Appendix A: Spatial autocorrelation effect 

We used Moran's I test to check for the spatial autocorrelation effect (the correlation among 

observation points due to the spatial proximity). The positive values of Moran's I test for AT, 

LST, and MRT and the (P-value<0.001) verified the spatial autocorrelation hypothesis in our 

data (Table A1). To address the concerns about the validity of OLS regression results due to the 

presence of spatial autocorrelation effect, we followed two common approaches. First, to 

minimize the potential effect of spatial autocorrelation, we randomly selected 3000 points (about 

one-third of the total observation points) to include in our OLS regression analyses. Second, 

using GeoDa software, an exploratory spatial data analysis tool, we ran two common spatial 

regression models called spatial lag model (SLM) and spatial error model (SEM) to compare the 

results with the OLS method. According to our analyses, the R-squared values of the OLS model 

appeared to be less than the SLM and SEM models (Table A2), suggesting the absence of bias 

due to the autocorrelation effect in the OLS method. Moreover, no significant difference in the 

value and direction of regression coefficients of SLM, SEM, and OLS methods was noticed. So, 

based on these observations, we proceeded with the OLS model with the random selection of 

observation points. We shall note here that this choice was also made based on the capability of 

the OLS method to include zone-based categorical variables in regression analyses which were 

important for the purpose of this study.  

Table A1. Moran’s I test results  

 Moran’s 

Index 

AT  0.51 

LST  0.59 
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MRT  0.24 

Table A1 represents the Moran’s I test using the total observation points to detect the potential 

spatial autocorrelation effect 

Table A2. Comparison of the SLM, SEM, and OLS regression results (R-squared) 

 SLM SEM OLS 

AT model 0.78 0.79 0.28 

LST model 0.87 0.88 0.56 

MRT model 0.62 0.62 0.51 

 

Table A2 represents the R-squared values of SLM, SEM, and OLS method using sampled 

observation points; AT, LST, and MRT as dependent variables; and street-level and population-

based variables as independent variables (Table 2)  

Appendix B: F-tests results of nested models 

Table B1. Degrees of freedom, sum and mean squares of the response variables 

Model Y DF Sum of Squares Mean Square  

Reduced 1 (Xg) AT 8836 15385.325 1.7412 

Reduced 2 (Xg+Xp) AT 8834 13582.713 1.5375 

Complete (Xg+Xp+Xz) AT 8731 10020.990 1.1477 

Reduced 1 (Xg) LST 8836 65595.475 7.4237 

Reduced 2 (Xg+Xp) LST 8834 65088.259 7.3679 

Complete (Xg+Xp+Xz) LST 8731 40338.703 4.6202 

Reduced 1 (Xg) MRT 8836 231002.781 26.1433 

Reduced 2 (Xg+Xp) MRT 8834 230088.591 26.0458 
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Complete (Xg+Xp+Xz) MRT 8731 209149.756 23.9548 

 

 

 

Table B2. F-test results for regression model relations 

 Partial F (Complete| 

Reduced 1) 

Partial F (Complete| 

Reduced 2) 

Partial F (Reduced 2| 

Reduced 1) 

AT 29.5762* 30.1284* 586.1964* 

LST 52.0632* 52.0083* 34.4201* 

MRT 8.6882* 8.4864* 17.5496* 

*Significant at 95% confidence level 

Appendix C: Comparison of the whole study area and high-density zone  

Table C1. Average values of exposure data and vegetation and urban form metrics in the 

whole study area and high-density zone 

 AT  LST MRT Plant Grass Tree Building SVF GVI 

Whole 

Study 

Area 

Ave. 82.30 39.9 49.9 0.02 0.05 0.28 0.03 0.69 40.5 

Std. 1.47 4.07 7.39 0.03 0.05 0.14 0.06 0.25 23.19 

High-

Density 

Zone 

Ave. 82.38 42.9 52.03 0.01 0.02 0.17 0.10 0.75 21.75 

Std. 1.26 3.18 5.55 0.01 0.03 0.11 0.09 0.20 16.38 

Net average -0.08 -3.00* -2.13* 0.01* 0.03* 0.11* -0.07* -0.06* 18.75* 
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change 

*Significant at 95% confidence level 

 

Table C2. The correlation between SVF, tree, and building in the whole study area and 

high-density zone 

 Tree Building 

Whole Study Area 

(SVF) 

-0.73 0.14 

High-Density Zone 

(SVF) 

-0.32 -0.27 
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